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The spindle assembly checkpoint 
Adam D Rudner* and Andrew W Murray 

The spindle assembly checkpoint monitors proper 
chromosome attachment to spindle microtubules and is 
conserved from yeast to humans. Checkpoint components 
reside on kinetochores of chromosomes and show changes 
in phosphorylation and localization as cells proceed through 
mitosis. Adaptation to prolonged checkpoint arrest can occur 
by inhibitory phosphorylation of Cdc2. 
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Abbreviations 
APC anaphase-prornoting complex 
BUB budding inhibited by benzimidazole 
MAD mitotic-arrest deficient 
MPS rnonopolar spindle 
SPB spindle pole body 

I n t r o d u c t i o n  
The survival of cells and organisms requires accurate 
chromosome segregation. Chromosome loss can kill cells, 
and chromosome loss or gain can cause birth defects or 
contribute to tumor progression [1]. The  spindle assembly 
checkpoint detects defects in spindle structure or in the 
alignment of chromosomes on the spindle, and delays 
the onset of chromosome segregation (anaphase) until 
these defects are corrected. Disruption of the spindle with 
microtubule-depolymerizing drugs such as nocodazole and 
colchicine arrests cells in mitosis (reviewed in [2]), and this 
arrest depends on the integrity of the spindle assembly 
checkpoint. More subtle defects, such as the presence 
of a single kinetochore (the protein complex assembled 
on the centromeric DNA that attaches chromosomes to 
microtubules) that is not attached to spindle microtubules, 
can also activate the checkpoint [3]. Genetic analysis 
in budding yeast has identified components of the 
spindle assembly checkpoint [4,5], making it possible 
to determine which defects arrest cells in mitosis by 
activating the checkpoint, and which induce arrest by 
other means. This analysis shows that the checkpoint 
detects spindle depolymerization [4,5], th~ presence of 
multiple minichromosomes and dicentric chromosomes 
[6°,7], and defects in the spindle pole body (SPB, the 
budding yeast centrosome) [8°,9°°], microtubules ([10]; 
C Mistrot, K Hardwick, A Murray, unpublished data), 
kinetochore proteins [11°], centromeric DNA [12], or 
microtubule motors ([4]; C Mistrot, K Hardwick, R Li, A 
Murray, unpublished data) (Table 1). 

Below, we discuss: the importance of kinetochore-microtubule 
interactions in activating the spindle assembly checkpoint; 
the protein components of the checkpoint, some of which 
reside on the kinetochore; the potential targets of the 
checkpoint; and a novel pathway out of mitosis that may 
be used by cells to adapt to a checkpoint arrest. 

T h e  ro le  o f  t h e  k i n e t o c h o r e  in t h e  s p i n d l e  
a s s e m b l y  c h e c k p o i n t  
All of the defects that the spindle assembly checkpoint 
detects can affect the ability of kinetochores to attach 
to spindle microtubules (reviewed in [13]; see Table 1), 
suggesting that kinetochores that are not attached to the 
spindle generate an inhibitory signal that halts the cell 
cycle. Exit from mitosis cannot depend on a positive signal 
from correctly attached kinetochores, as a spindle that 
lacks chromosomes (and thus also kinetochores) undergoes 
anaphase-like movements with no delays [14°°]. 

Direct support for the existence of an inhibitory signal 
from kinetochores comes from experiments on mammalian 
tissue culture cells. Anaphase will not begin until the last 
kinetochore attaches to the spindle, even if attachment 
takes many hours [3]. This delay can be abolished if 
the last unattached kinetochore is destroyed by a laser 
microbeam [15°°]. Low doses of microtubule-polymerization 
inhibitors and taxol, a microtubule stabilizer, also activate 
the checkpoint in animal cells [15°°,16,17]. In both of 
these situations, normal bipolar attachment of chromo- 
somes occurs and the spindle appears normal. It is thought, 
however, that in the presence of drugs the number of 
microtubules attached per kinetochore is less than normal 
and that the attachment is less stable than in the absence 
of drugs. 

In some meiotic cells, the checkpoint also monitors 
the tension on the kinetochore-microtubule linkage. 
In a fraction of irsect spermatocytes, one of the sex 
chromosomes loses its attachment to its partners [18]. 
As a result, this chromosome is attached to only one 
spindle pole (centtosome) and the cell arrests in mitosis 
for many hours. Using a microneedle to apply tension to 
the mono-oriented chromosome induces anaphase [19°°]. 
Tension may directly control the activity of the check- 
point, or it may stabilize the kinetochore-microtubule 
attachment [20], with the checkpoint responding to 
unoccupied microtubule-binding sites on the kinetochore. 
In mammalian cells and budding yeast, a single attached 
kinetochore that lacks a sister kinetochore does not 
activate the checkpoint [15°°,21°,22°], suggesting that in 
these cells tension may be applied by forces that move 
the chromosome arms away from the spindle pole. 
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Table 1 

Treatments and defects that activate the spindle assembly checkpoinL 

Treatment or defect Organism Description 

High doses of microtubule- Many 
depolymerizing drugs 

Causes complete spindle depolymerization. Strength of mitotic arrest and 
speed of recovery varies [2,4,5,23]. 

Low doses of microtubule- 
depolymerizing drugs 

Budding yeast, sea 
urchin embryos, 
HeLa cells 

Bipolar spindle forms, but anaphase is delayed [16]. In budding yeast, the 
BUB2 gene is not required for this delay [11°]. 

Taxol Mammalian tissue 
culture cells 

Stabilization of spindle microtubules delays anaphase [15"',1 '7]. 

Defects in microtubules Budding yeast Some tub2 (13-tubulin) mutants cause MAD-dependent arrest in mitosis( a} and 
some tub1 (ot-tubulin) mutants are suppressed by additional copies of BUB 
genes [10]. 

Excess or defective centromeres Budding yeast Excess circular or linear centromeric plasmids [6°], dicentric chromosomes ['7] 
and centromeric DNA mutations [12] all cause MAD- or BUB-dependent 
delays in mitosis. 

Defects in centromere-binding 
proteins 

Budding yeast Some cff13 and cbfl mutants cause MAD- and BUB-dependent delays in 
mitosis [11 °]{a). Some cep3, ndclQ and skpl mutants also delay in 
mitosis [61-63]. 

Injection of antibodies to 
kinetochore components 

Mammalian tissue 
culture cells 

Injection of 3F3/2 antibodies causes delays in mitosis [27]. Injection of 
antibodies to CENP-C and CENP-E also causes delays in mitosis [64,65] that 
may depend on the spindle assembly checkpoint. 

Monopolar attachment of 
chromosome homologs 

Insect spermatocytes Causes 5-'7 hour delay in mitosis unless tension is applied to kinetochore [19"°]. 

Single ufiattached kinetochore Mammalian tissue 
culture cells 

Delays the initiation of anaphase [3]. 

Defects in SPB Budding yeast karl, ndc2, mps2 and cdc31 mutants arrest in mitosis with monopolar 
spindles [35]. The cdc31 and raps2 arrest is MAD-dependent [9"']. 

Defects in microtubule motors Budding yeast, sea 
urchin embryos, 
mammalian tissue 
culture cells 

Mutants in the budding yeast Kar3, Cin8 and Kip1 kinesins delay in mitosis 
[66]. The kar3 and cin8 delay is MAD-dependent(a). Injection of antibodies 
to the kinesin CHO1 into sea urchin embryos or tissue culture cells causes 
delays in mitosis [6'7,68] that may depend on the spindle assembly 
checkpoint. 

Defects in B-type cyclins Budding yeast Deletion of CLB3 and CLB4 (two budding yeast B-type cyclins) causes a MAD2- 
dependent delay in mitosis [69]. 

Meiotic cross-overs Drosophila oocytes Tension caused by meiotic cross-overs between chromosome homologs is required for 
metaphase I arrest. This arrest may require the spindle assembly checkpoint ['70]. 

(a)C Mistrot, K Hardwick, R Li, A Murray, unpublished data. CENP, centromere protein. 

Do other cells have different sources for the checkpoint 
signal? In sea urchin embryos, partial or complete spindle 
depolymerization [23], or ripping the spindle in two with 
a microneedle [24], delays the cell cycle. In contrast, the 
presence of multiple unattached kinetochores causes no 
delay in the cell cycle [25]. Thus, in these cells, a spindle 
assembly checkpoint exists, but cannot be activated by 
unattached kinetochores. One possibility is that passage 
through mitosis in these cells "requires the presence of 
overlapping antiparallel microtubules that exist only in a 
spindle with more than one pole. This requirement may 
define a novel checkpoint in embryonic cells. 

Checkpoint proteins on the kinetochore 
The  chemistry of the kinetochore changes when it 
becomes attached to the spindle. The  3F3/2 antibody 
recognizes a phosphoepitope at the kinetochore of animal 
cells that is present in prophase and prometaphase [26]. 
Injecting the antibody into cells delays both anaphase and 
the loss of the phosphoepitope [27]. These correlations 
suggest that the 3F3/2-1abeled epitope is a component of 
the spindle assembly checkpoint, and that its dephospho- 
rylation occurs when kinetochores attach to the spindle 
and the checkpoint is turned off. In insect spermatocytes, 
kinetochores that are not under tension stain brightly with 
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3F3/2 and prevent the onset of anaphase. Applying tension 
to these kinetochores with a microneedle reduces 3 F 3 / 2  
staining and allows cells to enter anaphase [28°*]. 

The  vertebrate homolog of the budding yeast checkpoint 
gene IIIAD2 (mitotic-arrest deficient) codes for a protein 
that behaves like the 3F3/2-1abeled epitope [4,29°°,30 °°] 
(Table 2). XMAD2 and hsMAD2 (the Xenopus and 
human homologs) localize to kinetochores in tissue culture 
cells during prophase and prometaphase. Just like 3F3/2, 
the anit-XMAD2 antibody recognizes an epitope that is 
present in high levels only on kinetochores that have not 
attached to the spindle. XMAD2 is unlikely to be the 
3F3/2-1abeled epitope, as it is not phosphorylated. Like 
its yeast homolog, XMAD2 is required for the spindle 
assembly checkpoint. When XMAD2 is depleted from 
checkpoint-arrested frog egg extracts [31], a rapid exit from 
the checkpoint arrest ensues. 

The  conservation of ilIAD2 suggests that the spindle as- 
sembly checkpoint is conserved frown yeast to vertebrates. 
It also suggests that the putative vertebrate homolog of the 

yeast protein Madl might be the 3F3/2-1abeled epitope: 
Madl binds tightly to Mad2 (R-H Chen, K Hardwick, A 
Murray, unpublished data), so it is probably localized to 
the kinetochore, and conditions that activate the spindle 
assembly checkpoint induce its hyperphosphorylation 
([32°]; Table 2). 

Checkpoint kinases 
Checkpoint-induced hyperphosphorylation of Madl de- 
pends on four proteins: Bubl, Bub3, Mpsl and Mad2 
([9°',32"]; Table 2). The  BUB (budding uninhibited by 
benzimidazole) genes, like the MAD genes, were isolated 
in a screen for checkpoint-defective mutants [4,5]. Bubl is 
a protein kinase that can bind to and phosphorylate Bub3 
[33]. The  raps1 (monopolar spindle) mutation results in a 
defect in SPB duplication [34], but, unlike other mutations 
involved in SPB duplication [35], fails to arrest in mitosis 
[8°]. The  arrest of these mutants, and that due to spindle 
depolymerization, requires a functional MPS1 gene. Thus, 
ilIPS1 functions at two points in the cell cycle, in G I phase 
to ensure proper SPB duplication and spindle assembly, 
and in mitosis to respond to spindle defects. 

Table 2 

Checkpoint components. (a) Budding yeast spindle assembly checkpoint components. (b) Other known checkpoint components. 

Genel Function and properties 
protein 

(a) 
MAD1 Encodes a coiled-coil protein. Biochemical function of protein unknown. Nonessential. Protein hyperphosphorylated during checkpoint 

activation [4,32°]. Protein binds to Mad2( a 

MA D2 Biochemical function of protein unknown. Nonessential. Protein binds to Madl(a) and required for Mad1 
hyperphosphorylation [4,32°]. Xenopus and human homologs (XMAD2 and hsMAD2) localize to unattached kinetochores. 
XMAD2 is required for maintenance of checkpoint in frog e99 extracts [29°',30°']. 

MAD3 Encodes a 60 kDa protein whose biochemical function is unknown. Nonessential. Protein has homology with amino 
terminus of Bubl [4](b). 

BUB1 Encodes a protein kinase which binds to and phosphonjlates Bub3 [5,33]. Protein required for Mad1 hyperphosphorylation [32"]. 
Nonessential, but mutants have growth defects. Mouse homolo9 of Bubl localizes to kinetochores(c). 

BUB2 Biochemical function of protein unknown [5]. Nonessential. Fission yeast homolog, cdc16, is required for the spindle 
assembly checkpoint and has essential function in cytokinesis [71]. 

BUB3 Protein binds to and is phosphorylated by the Bubl protein kinase [5,33]. Bub3 required for Mad1 hyperphosphorylation [32°], 
but mutants have growth defects. 

M PS 1 Encodes a protein kinase [8",36]. Essential for SPB duplication [34]. Required for Mad1 hyperphosphorylation. 
Phosphorylates Mad1 in vitro [9°']. 

CDC55 Encodes a B-regulatory subunit of PP2A [59]. Nonessential, but mutants have growth defects, cdc55 mutants have 
increased tyrosine phosphorylation on 0dc28(d), 

(b) 
p42-ERK2 A MAP kinase that is required for activation of the checkpoint in Xenopus egg extracts [31]. 

p53 Tumor suppressor protein that is required for the DNA-damage checkpoint in vertebrate cells [38]. Possible role in the 
spindle assembly checkpoint [37°]. Mutants may have additional checkpoint defects in centrosome duplication [39] and S- 
phase restraint [?9]. 

(a)R-H Chen, K Hardwick, A Murray, unpublished data. (b)K Hardwick, A Murray, unpublished data. (c)S Taylor, F McKeon, personal communication. 
(d)J Minshull, A Straight, A Rudner, A Dernburg, A Murray, unpublished data; see Note added in proof; J Wang, D Burke, personal communication. 
ERK, extracellular signal regulated kinase; MAP, mitogen-activated protein. 



776 Cell multiplication 

Mpsl is likely to be the physiological Madl kinase 
[9"',36]. MPS1 encodes a protein kinase that can phospho- 
rylate a fragment of Mad 1 in vitro. Overexpression of Mpsl 
causes a mitotic arrest and hyperphosphorylation of Madl. 
This arrest is not due to spindle defects but reflects a 
constitutive activation of the checkpoint: mutations in the 
MAD1-3 or BUB1-3 genes prevent this arrest, confirming 
that these six checkpoint proteins act in a single pathway. 

A vertebrate homolog of Bubl can also be found at the 
kinetochore (S Taylor, F McKeon, personal communication), 
raising the possibility that Bubl, Bub3, Madl, Mad2 
and Mpsl form a multiprotein signaling complex at 
the kinetochore. Even if this appealing speculation is 
true, however, we. know nothing about how the complex 
converts information about kinetochore-microtubule inter- 
actions into changes in protein phosphorylation. 

p53 and the spindle assembly checkpoint 
Mammalian cells that lack a functional p53 gene increase 
in ploidy when cultured in nocodazole or colcemid [37"], 
phenotypes identical to those of mutants in the budding 
yeast spindle assembly checkpoint genes. This result has 
been interpreted as indicating a role for p53 in this 
checkpoint. An alternative explanation is that wild-type 
and p53-deficient cells leave mitosis at similar rates, 
but that the wild-type cells either die or arrest in GI 
phase. ~uch behavior might reflect a novel checkpoint that 
monitors cell ploidy and prevents cells that have passed 
through aberrant mitosis from passing from GI phase into S 
phase, a cell cycle transition that p53 is known to regulate 
in.response to DNA damage (reviewed in [38]). Passage 
through this checkpoint after an abortive mitosis would 
also lead to the increase in centrosome number that has 
been observed in p53-deficient cells [39]. 

Targets of the checkpoint 
How does the spindle assembly checkpoint prevent 
afiaphase? The cyclin-proteolysis machinery causes the 
destruction both of cyclin B [40] (and thus of the kinase 
activity of Cdc2/28--cyclin B complexes) and of proteins 
that regulate the separation of sister chromatids [41]. Two 
candidates for these regulatory proteins are Pdsl from 
budding yeast and Cut2 from fission yeast. These two 
proteins are degraded by the cyclin-proteolysis machinery 
as cells exit mitosis, and their degradation is required 
for sister chromatid separation [42",43",44°']. When mad 
mutants leave mitosis in the presence of spindle damage, 
B cyclins are degraded and sister chromatids separate, 
as would happen in a normal mitosis (J Minshull, A 
Straight, A Rudner, A Dernburg, A Murray, unpublished 
data; see Note added in proof). Thus, a likely target of 
the spindle assembly checkpoint is the cyclosome/APC 
(anaphase-promoting complex), the protein complex that 
ubiquitinates cyclin B, Pdsl and'Cut2 (Fig. 1). 

The  cyclosome/APC has been purified from clam and frog 
eggs and is a 20S complex containing eight major subunits 

([45",46°]; J-M Peters, R King, C Hti6g, M Kirschner, per- 
sonal communication; see Note added in proof), including 
homologs of the yeast proteins Cdcl6, Cdc23 and Cdc27, 
all of which are required for the degradation of yeast B 
cyclins [47]. Unlike other components of the destruction 
machinery, the activity of the cyclosome/APC is regulated 
during the cell cycle and four of its components show 
changes in protein phosphorylation during the cell cycle. 

Is there any direct evidence that the cyclosome/APC is 
the target of the checkpoint? Yeast extracts made from 
nocodazole-arrested cells (in which anaphase is prevented 
and the checkpoint is turned 'on') have no in vitro 
ubiquitination activity against CIb2 (the major budding 
yeast B-type cyclin) [48"]. In addition, cdc16, cdc23, and 
cdc27 mutants arrest in mitosis, with high Cdc2/28-cyclin B 
activity and unseparated sister chromatids even in the 
absence of a functional MAD- and BUB-dependent 
checkpoint ([47]; A Rudner, A Murray, unpublished data). 

Are there other I~otential targets of the checkpoint? Acces- 
sibility or recognition of substrates by the ubiquitination 
and proteolytic machinery might be regulated. Although 
free cyclin B can be ubiquitinated in vitro [45°,46°], 
Xenoptts cyclins A1, B1 and B2 require Cdc2 binding for 
their destruction [49]. Xe-p9 is the Xellopus homolog of 
the Cdc2-binding protein S u c l  from fission yeast [50]. 
Xe-p9, which binds tightly to Cdc2, is also required for the 
destruction of cyclin B in egg extracts [51°]. In addition, 
a large group of budding yeast mutants allow sister 
chromatid separation without cyclin B degradation [52-56], 
suggesting that the accessibility of different substrates 
to the cyclosome/APC might be differentially regulated 
during mitosis. 

Is there regulation after cyclin ubiquitination? One report 
shows that the number of ubiquitin molecules on cyclin 
is the same in extracts in which cyclin is stable as it 
is in extracts in which cyclin is being rapidly degraded 
[57"]. Interpreting this observation is complicated by the 
probability that cyclin molecules that carry more than a 
threshold number of ubiquitins are rapidly degraded, and 
are thus excluded from this steady-state analysis. 

Adaptation to checkpoint arrest 
In many cell types, the duration of the mitotic arrest 
induced either by treatment with anti-microtubule drugs 
or by other spindle defects is not indefinite [2,58]. 
Cells eventually separate their sister chromatids and 
return to interphase despite the absence of a mitotic 
spindle. Continued activation of the checkpoint prevents 
proliferation and may be lethal. Thus, cell division in the 
face of the checkpoint signal produced by a persistent 
spindle defect (adaptation) may be beneficial because it 
allows a chance for survival as opposed to the certainty 
of death. In animals, where aneuploidy can initiate 
tumorigenesis [1], apoptosis may replace adaptation as the 
fate of cells that cannot correct their spindle defects. 
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Figure 1 
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A model for the control of the exit from mitosis in budding yeast. For a successful mitosis, the sister chromatids must separate and 
Cdc2/28-cyclin.B must be inactivated. Sister chromatid separation is inhibited by Pdsl and the presence of active Cdc2/28-cyclin B. 
Both of these inhibitory influences are required to maintain sister chromatid linkage. Activation of the cyclin-proteolysis machinery (which 
involves ubiquitination of the target proteins by the cyclosome/APC and proteolysis of the target proteins by the proteasome) induces the 
ubiquitin-dependent destruction of cyclin B and Pdsl, thus removing both forms of inhibition and inducing sister chrometid separation. 
C, dc2/28-cyclin B can also be inactivated by inhibitory phosphorylations on threonine 18 (T18) and tyrosine 19 (Y19) of Cdc2/28. (Activating 
phosphorylation occurs at threonine 169 of Cdc2/28 [not shown]). Cdc55, a B-type regulatory subunit of protein phosphatase 2A, normally 
restrains the use of this alternative pathway leading out of mitosis by ensuring that Cdc2/28-cyclin B remains active. Prolonged arrest in mitosis 
inhibits Cdc55 activity (not shown) and leads to adaptation from the arrest. The MAD- and BUB-dependent part (not shown) of the spindle 
assembly checkpoint (center right) acts to inhibit the activity of the cyclin-proteolysis machinery in cells with spindle defects. For Pdsl, the name 
of the fission yeast counterpart is indicated in parentheses. 

Adaptation could occur by inactivating the checkpoint 
and allowing a normal exit from mitosis. An alternative 
possibility is that there is a second pathway out of 
mitosis that is turned on during periods of prolonged 
arrest (Fig. 1). The  recent discovery that mutations 
in CDC55 are checkpoint-defective supports the latter 
possibility (J Minshull, A Straight, A Rudner, A Dern- 
burg, A Murray, unpublished data; see Note added in 
proof; J Wang, D Burke, personal communication). Like 
the mad mutants, cdc55 mutant cells cannot maintain 
CdcZ/ZS-associated kinase activity and sister chromatid 
cohesion in the presence of spindle defects. The drop 
in Cdc2/28-associated kinase activity in rdc55 cells is 

due to inhibitory phosphorylation of Cdc28 on the 
residues threonine 18 and tyrosine 19, rather than to 
cyclin proteolysis (see Fig. 1). CDC55 encodes a B-type 
regulatory subunit of protein phosphatase 2A (PP2A) [59]. 
PPZA activity regulates Cdc2/Z8-associated kinase activity 
by regulating both Cdc25 and Weel, the phosphatase and 
kinase responsible for removing and adding the inhibitory 
phosphorylations on Cdc2/Cdc28 [60]. 

The checkpoint defect of cdc55 mutants is quite different 
from that of any of the mad or &lb mutants and might 
reflect a role not in the initial response to spindle 
damage, but rather in an adaptive pathway. This theory 
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would propose that the absence of CDC55 causes cells 
to immediately adapt to spindle damage and exit mitosis 
independently of proteolysis (Fig. 1). 

Conclusions and future d i rec t ions  
Molecular details of the spindle assembly checkpoint are 
conserved from yeast to humans. Sensing and transducing 
proteins of the checkpoint reside on the kinetochores 
of chromosomes. Many details, though, remain to be 
elucidated. For example, what are the identities of the 
3F3/2-1abeled epitope and its kinase? Are all of the yeast 
checkpoint proteins conserved in larger eukarTotes and 
do they reside on the kinetochore? Is the cyclosome/APC 
the target of the checkpoint? The  cdc55 mutation serves 
as a starting poir~t for the investigation of adaptation 
to prolonged checkpoint arrest. This novel pathway that 
leads out of mitosis may also allow a deeper understanding 
of the normal exit from mitosis. 

N o t e  added in p r o o f  
The  paper referred to in the text as J Minshull, A Straight, 
A Rudner, A Dernburg, A Murray, unpublished data, has 
now been accepted for publication [73]. 

The  paper referred to in the text as J-M Peters, R King, 
C H~5~g, M Kirschner, personal communication, has now 
been accepted for publication [74]. 
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